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Therefore, it has been established for a continuous medium [S, 91, 

Chetaev principle. The work of an elementary cycle consisting of the forward 

motion of a continuous medium in the field of mass and surface forces and the reverse 
motion in a fieldof forces which would be sufficient to produce the actual motion if the 
medium particles were perfectly free,has (at least a relative) maximum in the class of 

fictitousGaussian motions for the actual motion. 
Just as the D’Alembert-grange principle, this principle can also be expressed taking 

into account the first and second laws of thermodynamics. 
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We present an analytical method for the computation of problems of incom- 
pressible boundary layer theory based on an application of the method of SUC- 

cessive approximations. The system of equations is reduced to a form suitable 
for integration. Parameters characterizing the external flow and the body geo- 
metry are contained only in the coefficients of the system and do not enter 
into the boundary conditions. The transformed momentum equations are inte- 
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grated across the boundary layer from a current value to infinity with the bound- 
ary conditions taken into account. If the integration is made from zero to in- 

finity, then the equations pass over into the Karma/n relations. Integrating the 

system of equations a second time, using the boundary conditions at the wall, 
we obtain a system of nonlinear integro-differential equations. To solve this 
system of equations we apply the method of successive approximations. To 

satisfy the boundary conditions at infinity we introduce, at each step of the 
iterations, unknown “governing” functions. From the conditions at the outer 

side of the boundary layer we obtain additional equations for their determina- 
tion. With the iterational algorithm formulated in this way, the boundary con- 
ditions, both on the body and at the outer side of the boundary layer; are satis- 

fied automatically. 
We consider a locally self-similar approximation. In this case, relative to 

the “governing” functions, we obtain an algebraic system of equations. We 
write out the solution in the first approximation. The results obtained in the 
first approximation are compared with the results of finite-difference compu- 

tations for a wide range of problems. The results obtained in this paper are 

compared with those obtained in [l] for the flow in the neighborhood of a 

stagnation point. An indication is given of the nonuniqueness of the solutions 

of the three-dimensional boundary layer equations. 

1, We consider the flow of a viscous incompressible fluid over an arbitrary smooth 
surface S. The three-dimensional boundary layer equations for an incompressible fluid, 
obtained under the usual assumptions of boundary layer theory, have the form [Z] 

U -k+-+$ 
Jfgil at 

+ u G + A& + A2wa + A,uo = A4 + v g (1.1) 

u% + B1u2+ B2m2+ B,uw = B, + v g 

The boundary conditions for this system of equations are 

u=v=w=o for 5 = 0 
(1.2) 

u--t u,, w + w, for 5 + 00 

Here E, q are coordinates on the surface of the body, 5 = 0 is the equation of the 

surface ; u, w and v are the velocity components along the E, tl and 5 axes,respec- 
tively ; p is the pressure; y is the kinematic coefficient of viscosity; gll, g22, 612 

are metric coefficients; g = g,,g,, - gf2 . The coefficients A, through B, are de- 
termined by the external flow and the geometry of the body( see [Z]). 

We reduce the system of equations of the three-dimensional boundary layer to a form 
suitable for integration, and we introduce the following change of variables: 

u = u, (L rl) E (E, 9, A) 

w = p (L rl) u, (E, rl) [G (E, 71, J.1 + cpE (E, rl, A)] 
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where a and fi are arbitrary functions, the choice of which is made below. Then the 

system of equations (1.1) can be reduced to the following form (see [2]): 

a*E 
== K -$ + Ni” (E” - I) + N2*G2 + N,*EG + 0.3) 

N4E -$$ + N, (G + qE)+- 
PG 
m= K~+Ml*(Ez - I) -t M2"G2 -j- M,“EG + 

The boundary conditions assume the form 

The coefficients Ni*, N2*, N3*, MI*, M,*, MS*, PI*, P,*, NI, N5 depend 

only on E and 11 ; they are associated with the geometry of the surface and the external 
flow. We integrate the transformed moments equations of the system (1.3) with res- 
pect to the variable h, from some value h to 00 , taking the boundary conditions(l.4) 

into account. We find 

a/3 --= 
ah - K (E - 1) + (PI” + NI*) @,l i- (Pz” + N,*) %I + (1.5) 

N,*BB, + iV1*Q1 - P,*82 -+- N1+ + qN5 F + N5 $ 

aG 
--=- 

ah KG -t MI* (%I -t 01) + (P,* + M,*) ‘L + 

(P,*+ M2*) et2 + N, 2 + N, % + cpN6 -$ 

Here we have used the asymptotic teidency to zero of the derivatives aE/tiii, and &i 

drh for h -+ co. In addition, we assume existence of the integrals 

t)ii = r (E - 1) Edh,, &I = s” EGdh,, B,, = [ G2dhl 
). h h 

81, == T (Ii’ - 1) Gdh,, 

cu 

O1 z.x f (E - $1 dh, 8, = r Gdhl 
1. h A 

If the integration is made from zero to infinity, the equations pass over into the Kkman 
relations. On the left sides of Eqs. (1.5) we obtain components proportional to the fric- 
tional stress at the wall, Integrating Eqs. (1.5) a second time termwise across the bound- 
ary layer from zero to a current value h and using the boundary conditions, for h = 0, 
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- 8 = &* + (PI* + N1*) &* + iva*&* -+- (Pa* + fv3*) @,I* + (1.6) 

Ni%i” - vz*e,* + N 4 -$0u” + ML+ 0u* + Ns F 

- G = e,,* + Ml” (011” + 01”) + (Pz” + M,*) 0,s” 4- 

( pl* + ~4,“) t&* + A’, $- O,,” + N, $- esn,* + qN+ 021~ 

We have used the boundary conditioi: E = G = 0 for .h = 0 and we have assu- 

med the possibility of exchanging the order of integration and differentiation. Here 

). A 

e,,* = ’ K (2 - E) dh,, s e,,* = - s KG dh, a 7) 

0 0 

A change in the magnitudes of the velocity depends on terms appearing in the expression 

(1.6) which characterize the influence of factors of a diverse nature. This variation is 
associated with the nonlinear interaction of the longit~iM1 flow, the transverse flow, 

and the flow perpendicular to the wall, and also the body geometry and the external 
pressure. 

The qualitiative nature of the influence of these factors on the value of the magnitude 
of the velocity is a varied one. The main contribution to the profile of the longitudinal 
velocitv component is found to consist of the same terms as for a two-dimensional flow 

ie or*, (PI* -/- N,*) 6~1, N,*8,*). The term P,*0,* characterizes the fundamental 
influence of the secondary flow on the magnitude of the longitudinal velocity, The term 

P,* -I- iv,*) (41” in the first of the Eqs. (1.6) is the result of the interaction of the 
flows in the longitudinal and transverse directions. The term &*8,,* indicates the 
nonlinear influence of the secondary flow on the velocity profile. 

The main ~n~butio~ to the magnitude of the transverse com~nent of the velocity 
arises from the terms CjO2*, M1* (8,r* + 6,*). If the quantity &f,* is equal to zero, 
then the secondary flow disappears. If the quantity Mr* is comparatively small, then 

the secondary flow is also small. The terms (Pi* + Ms*) t&*, (P,* + M,*) e,,* 
characterize the interaction of the flows in the longitudinal and transverse directions. 
The results of finite-difference caIculations of boundary layer flows, obtained earlier 
(see [Z]) for a number of probIems (ellipsoids at an angle of attack, direct and inverted 
cones at an angle of attack, and other bodies), show that the quantities 601*, 002*, 

e,,* , e,c, ezl*, e12*, el*, 0,* and the quantities t3il, es2, esl, e12, &, 0, vary 
comparatively weakly along the surface of the body, although there is a fairly noticeable 
variation of the velocity profile. In addition, the integrals @,a*, 8,,*, 8,,*, O2* and 
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the integrals eas, l&r, Ora, 0, are considerably less than the integrals f&*, Cl,* and 
C&r, 8, in the region of the “nonseparable” boundary layer. 

2, To solve the system of nonlinear integro-differential equations (1.6) we apply the 
method of successive approximations [ 31. In what follows, we consider the problem in 
the locally self-similar case, based on the assumption that the derivatives of the func- 
tions E and G along the g and q coordinates are small when self-similar variables 

are used and that these derivatives can be neglected in Eqs. (1.6), i. e. the coordinates 
E and tl enter the solution of the problem as parameters depending on the external 
flow and the geometry of the body. 

The boundary condition for h = 0, as a consequence of the Eqs. (1.6). is satisfied 

automatically. In order for the boundary conditions at the outer side of the boundary 
layer (31. + C=S) to be satisfied in the successive approximations process, we introduce 
unknown “governing” functions c@) (E, TQ and b(n) (E, q) as follows: 

,P) = E (5, rl, cc*) (E, rl) A), 

G@) = P) (E, rl) G (E, ‘I, c’“‘(E, 4 A) 

For the approach proposed we obtain, at each n th step of the iterational process, for 
h -+ co equations for c(n) and b@). If the iterational process converges for n -+ 00, 
the quantities c(n) and btn) tend to unity. 

In the locally self-similar case the successive approximations algorithm has the form 
(@5 = 1 / c(n)): _ &W = 6’“’ (&J + b’W@ + b’“‘ZC~l) (2.1) 

_ ,$“+r) = 6(n) (_Q ‘_+ b(n) BE’ + b’“‘aC%;l) 

Here 

(5 = CW) 
0 0 

The dimensionless friction components at the wall are obtained from the formulas 

!I(“) [(Pz* + N,*)@!, - Pz*@;] + b(n)2N2*0~~o} 
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&n+l) 

--z- h=0= 1/6’“‘{W (@‘, + ef.$, + b@) (PI* + MS*) @IO + 

bcnjz (Pp,” + M2*) ego> 
The values of the “governing” functions b@) and 6(n) are obtained from the expressions 

a(*) +&'m + h@)B$ + b'"'2C:n,',)-l (2.4) 

bcnJ2Cg’, + b’“‘Bgb, + Ag; = 0 

From the second of Eqs. (2.4) we find 

b(‘“) = (- B& _t (Bet - 4A~‘ooC3”‘) / ZC:‘;b, (2.5) 

The sign in the expression for ti*) is chosen in such a way that in the axially symmetric 

case 6@) = 0, i.e. the plus sign is chosen since in the axially symmetric case 

A - 0. The condition for the existence of secondary flows leads to relationships of 2am - 

the form 
Bgz - 4Ag),@o > 0 

The coefficients ACL, BcL, CgL and A:“,k, Bgk, C:“,b, are functions of(2;6) 
and 7. The relations (2.6) connect the coefficients appearing in the initial system of 

equations and are determined by the nature of the external flow and the body geometry. 
From the relations (2.6) we obtain a connection between the parameters of the external 
flow and the body geometry for which a solution can be constructed by the method indi- 

cated. 
The successive approximations algorithm adduced can be implemented in various 

ways, in particular, with the help of an electronic computer. Since the difficulties of 

numerically implementing this algorithm are of the same, and possibly even greater, 
order as those of the finite-difference method, the fundamental aim of our approach is 

to obtain a solution in analytical form. With this aim in view, we consider the first 

approximation. An analytical version of the successive approximations method for sol- 
ving such involved problems, is justified providing it yields a solution close to the desired 

solution even in the first approximation. 

3. We shall define the zeroth approximation in the class of the following functions 

{.&I (see C41): 

W)=# (y - Qm e-E* dE , m=0,1,2,... (3.1) 

The coefficients A,,, are chosen soyhat 2, (0) = 1. Then 

A-1=1, A,,=-- &, Al = 2, As;, = - F (2k)!! (3. a 
n 

A+, = (2k - I)!! 2”, Al, = 2kAk_, 

This system of functions satisfies the relations 

4n=zn-2+ ,,"- 7 yZ,._l (Z-, (y) = e-1/‘), 
m-1 

2 = + Z,_, 
m-k 

(3.3) 

Y . 

s 
-G(~)dy = + %nt~, 

Y 

mt1 s 
z,Wy=+Vk,,tr-1) 

00 0 
WI+1 
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We note that the system of functions {z,} also possesses properties which make it pos- 
sible to calculate integrals of the form u 

I p,q = ‘-wW,(Y)~Y s (3.4) 
0 

in terms of the initial system of functions. We have 

I A (' - &#',+,) - AA';' Pt4=-A Ip-l,Q+l 
9+1 P-l cl+1 

Moreover, Y 

s 
Z,.z,_~dy = *(z,a d 1) (3.5) 

0 

We define the zeroth approximation for the functions E(O) and G(O) in the form 

_I$~) = 1 - Z,(& G(O) = /l(O) [Z, (5) - z-1 (Q]) r; = h / VsiF (3.6) 

Then in the locally self-similar case the first approximation is as follows: 

___E($ = a(o) (Ag + b(o) B$ + b(s) a@) 

__@’ = d(O) (Ag + b’O’Bg + b’o’ a,$;) 

where 6(O) and b(O) are determined from the expressions 

a(O) = - (_/zlZDo + b(O) BEO, + P2@J1 

b(O) = [ -B$jp + (BfiL - 4Agm. f$,,)“‘]/2c~m 

Here 

(3.7) 

(3.3) 

AED--- r* 2 [$ (Zs- 1) - f$ (2, - 1) - Il*Of 2 (2, - l,] + (3.9) 

(PI* + N1”) (Jo.o + $ (2, - 1)) + NI* 2 (Z, - 1) 

Bl”a’ = p2* (A2 Ioao - 2 Il.0 + (2 - A*) 2 (-G - I)> + 
(p**+ N3*) (‘f& (2, - 1) - 2 (2, - 1) - Jo.0 + Jo.4) - 

p2* (‘2 (2, - 1) - 2; (z-2 - 4 
Ci”a’ = Nz* (Jo., - 2Jo.4 + J-I. -I) 

(The notation z1 (r/g indicates that the argument is multiplied by the quantity vn 
Analogously, we obtain the quantities A?:, B$, and C$) 
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Ag = Ml* J,., -i_ 2 $22 - I)) (3.10) 

B(O) 
2a = PI* 

( 
~(z,-1)-2~~(2,-l)+~(z_,--)+ 

( ) 
2 2(21 - 1) - $(L.o - G. -1,) + p1* + Ma*) x 

( 
-$l(&- 1> - 2 (2% - 1) - Jll.0 4 JB.4) 

cg = P2*([IQ._L A* - Io.oA* _t Il.0 A2 -I1.4$] - 

[L&$Lj [+y,-l)-~(zo-~,]}+ 

p,* + Ma*) (Jo.0 - ZJCL-1 -I- J-1. -11 

Thus we have obtained, in a first approximation, the solution in the general case for an 
arbitrary external flow and arbitrary bod geometry. 

We find nowthe quantities A%,, Bbm, CfJj, and A.$:;, BgL, C!$i. We have 

-Ag, = $w+ (&++v, (3.11) 

-Bfi m = (+-~)P,*+(~_L&,* 

--CF_=-&* !+L’] 
c 2% 

In an analogous way we obtain the quantities AZ= BE- and C$$,, 

-Ag”,‘oo = (&+$G* (3.12) 

-B’O’ 2lz~ =-3(&q) p,*+. ($q-)n&* 

“.-cg_, =: - pp(Jg+; -1) -jJfMz* (J!+&) 

In final form the formulas for the dimensionless friction components at the wall are 
written in the form 

&E(f) 
--8x- I 

= ~~~0.2337P~* +0.7978~~* + (3.13) 
h=O 

b'"'(0.2095N,* - 0.1125&*) - 0.071b(0)2Nz*) 

ac(iJ - 
ah I 

h=O = l/f)'o' {0.7978M1* + b'0'0.2095(P,* + ills*) - 

o.07~~(“)z (Pa” +- iv,*)) 

where the quantities &o)and MO) are computed from the formulas 

b(O) = [0.31P1* +0.194M,* - ((o.31P1* + 0.194M,")" + (3.14) 

1.636M1* (0.1P2* + 0.047&*))"]/(0.~99p,* Jr O.O95M,*) 
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d(O) = (0.25Pl* + 0,409N1* + b(O) (O.i94N,* - 0.103P,*) - 

b(")20.048N2")-1 
Components of the friction magnitudes at the wall are determined from the formulas 

4. We consider the flow around the stagnation point of a three-dimensional body 
with two-fold curvature. Let M be a stagnation point on the surface of a smooth body. 
We assume that the external flow is irrotational. About the point M the surface of the 
body may be represented by its tangent plane. We choose a rectangular system of coor- 

dinates (E, ‘1, 5) so that the E, and ‘q axes lie in this plane and the c-axis is perpendi- 
cular to it. The velocity components of the external flow have the form 

U, = a& we = btj 

Following [2],we choose p = q / E, a = E. Then cp = b / a. If q = 0, this 

case corresponds to two-dimensional flows; if cp = 1, it corresponds to a flow around 

a body of revolution, symmetrically placed in the flow. We consider the case in which 
--1<cp<l. 

The dimensionless friction magnitude at the stagnation point is obtained from the 

formulas (3.13) and, in the given case, assumes the form 

aE(') = v@(1.0315 + 0.2337~ - 0.1125b’0’) ah 

(-0.7978q (1 - cp) + 0.2095 (1 + 39) b(O) - 0.142b'0'2) 

(4.1) 

Here the quantities 6(a) and b(o) are computed from the formulas 

6(o) = (0.659 + 0.25~ - 0.103b(o))-1 (4.2) 

b(o) = (0.31+0.69&p f ((0.31+ 0.698c#+(cp2 - cp)O.24P)/O.295 

We observe that two values are obtained for b(O). The quantity under the radical sign 
is Strictly positive for - 1 < q < 1 , i.e. for each value in the given interval there 
exist two distinct solutions satisfying all the required conditions. One solution, which has 
a physical meaning, is easily selected from the condition that secondary flows are not 
present in the axially symmetric case (b(o) 3 0). The other solution is obtained by 

choosing the plus sign in front of the radical. This solution is probably of mathematical 
interest. In performing the numerical calculations, the existence of a second solution 
may lead to a situation where, specifying an initial profile, we may find the solution at 
the stagnation point incorrectly. In the iterative process of numerically solving the 
problem it is possible to obtain two distinct solutions. But as soon as the prifile of the 
axially symmetric problem is taken as the initial profile, the iterative process conver- 
ges rapidly to the required solution. We give below a comparison of the results from 
Cl], obtained by numerically integrating a system analogous to the system of Eqs.(l. 3) 
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with boundary conditions (1.4). with the results obtained from the first approximation. 

0 0.00 0.25 0.50 0.75 1.00 

E’(0) 1.233 1.247 1.267 1.288 1.312 

Q’(O) 1.270 1.276 1.290 1.307 1.327 

G’(O) 0.570 0.805 0.998 1 .I64 1.312 

G,‘(O) 0.610 0.832 1.017 1 .I80 1.327 

The results indicated with the subscript c were obtained from the approximate analy- 

tical formulas (4.1) and (4.2) of the present paper. The good agreement of the friction 
components, even in the first approximation, throughout the range of variation of the 

parameter cp from zero to unity should be noted. 
We restrict ourselves to this range of variation of cp, since for other values (cp < 0 

and cp > 1) we have the following relationships (E = f’, G = g’): 

and 

f (h, l/q) = f” (hlcp’$ cp), f’ (A, l/q) = -_g’ (wp’$ (p) 

g (h, l/q1 = f’f, (h/q+ cp), g’ (A, l/q) = f’ @/cp”% 9) (cp > 0) 

Using the values of the functions {&}, we can construct the velocity profiles in 

the longitudinal and transverse directions and also in the direction normal to the wall. 
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